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In order to develop regression/classification models, QSAR analysis typically uses molecular 

descriptors as independent variables. The number of molecular descriptors has hugely 

increased over time and nowadays thousands of descriptors, able to describe different aspects 

of a molecule, can be calculated by means of dedicated software. However, when modelling a 

particular property or biological activity, it is reasonable to assume that only a small number of 

descriptors is actually correlated to the experimental response and is, therefore, relevant for 

building the mathematical model of interest.  

As a consequence, a key step is the selection of the optimal subset of variables (i.e. molecular 

descriptors) for the development of the model. This is precisely the aim of the so-called 

variable selection methods, which allow to: 

 improve interpretability (simple models); 

 neglect not significant effects, thus reducing noise; 

 increase the model predictive ability; 

 speed up modelling time. 

 

During the years different variable selection methods have been proposed, from relatively 

simple to more recent ones that took inspiration from different scientific fields, like genetics 

and ethology. Furthermore, some methods able to perform both regression and variable 

selection simultaneously have recently been proposed.  

 

In this tutorial we give a short overview of the main variable selection methods. 

 

All Subset Models (ASM) 

The All Subset Models (ASM) method is the most simple and computationally consuming. It 

consists in the generation of all the possible combinations of the p variables, from size 1 to p, 

p being the total number of variables. This method guarantees that the best subset of 

variables is found, but it’s very computationally consuming, being the total number of 

combinations of p variables given by: 

2 1p   

As a consequence, the method becomes unsuitable for large numbers of variables. If one is 

interested in developing simple models, i.e. models comprising a limited number k of variables, 
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one can calculate all the possible combinations of the p variables up to a maximum model size 

k (e.g. 1 ≤ k ≤ 20), the beneficial effects being both an easier interpretation of the model and 

a reduced computational time. In this case, given p the number of available variables, the total 

number of models t, from size 1 to k, is given by: 
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The total number of models to be generated is smaller than the case k = p, but it is still huge 

when the number of variables, p, is high (even with a small k value). 

For example, if we consider a problem where p = 130 and k = 20, the total number of 

generated models is 2.04x1023. Assuming that our computer can compute 10.000 models per 

second, which is a reasonable estimate for current laptops, the time required to compute all 

the models is 6.46x1011 years, which means we should have started long before the Big Bang 

to have the calculation completed by now. Figure 1 depicts the sharp increase in the number of 

generated models (in logarithmic scale) for modest increase in the number of variables. An 

estimate of the computational time is reported along the secondary vertical axis. 

 

 
Figure 1. Number of models vs. number of variables for an All Subset Models method with 

k = 20, k = 10 and 2p – 1, assuming a computational speed of 10.000 models per second. 

 

Sequential Search (SS)1  

Sequential Search (SS) is a simple method aimed at finding optimal subsets of variables for a 

specified model size. The basic idea is to replace each variable at a time with all the remaining 

ones and see whether a better model is obtained. This procedure differs from the All Subset 
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Models method in that in this case not all the possible combinations of the p variables are 

tested, the method thus being less time consuming and meta-heuristic. 

The initial population is usually randomly generated, giving constraints on the number of 

variables (size) for each seed (model). All variables are replaced with all the others and the 

new seed is chosen only after all the variables in the model have been replaced and the 

obtained models have been compared. Figure 2 depicts the algorithm. 

 
Figure 2. Depiction of the Sequential Search algorithm. 

 

StepWise methods (SW)1,2  

StepWise regression methods are among the most known subset selection methods, although 

currently quite out of fashion. StepWise regression is based on two different strategies, namely 

Forward Selection (FS) and Backward Elimination (BE). 

 Forward Selection method starts with a model of size 0 and proceeds by adding variables 

that fulfill a defined criterion. Typically the variable to be added at each step is the one 

that minimizes Residual Sum of Squares (RSS) at most. This can be evaluated also by a F-

test, defined by: 
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where RSSp and RSSp+j are the residuals sum of squares of the models with p and p+j 

variables, s2
p+j is the variance of the model built with variables p+j and Fin is used as stop 

criterion (usually Fin is set to 4), corresponding to the probability α, with 1 degree of 

freedom for the numerator and (n-p-1) for the denominator. 

 Backward Elimination method proceeds in the opposite way, in that it starts from a model 

of size p, p being the total number of variables, and eliminates not relevant variables in a 

step by step procedure. In this case, the variable to be deleted is usually the one that give 

the minimum increase in RSS. Like in the FS method this can be evaluated by a F-test, 

defined by: 
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where Fout is used as stop criterion. 
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The original algorithm was later improved by Efroymson3 in 1960 by combining Forward 

Selection and Backward Elimination. It starts with Forward Selection and after each variable 

(other than the first one) is added to the model, a test is made to see if any of the selected 

variables can be eliminated without largely increasing the RSS. 

 

The strategy based on F-tests is quite out of fashion and more recent versions select variables 

that minimize other functions, such as the Akaike Information Criterion2,4 (AIC) score, defined 

as: 

min( ) 2( ')p pAIC L p    

where p’ is the number of parameters in the model and Lp is the log-likelihood of the model 

with p’ parameters. For regression models, the optimal complexity according to the Akaike 

criterion is obtained by minimizing the following5: 
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where RSS is the residual sum of squares of the model with p variables. 

Because often variables come in groups, smart stepwise procedures are able to add or drop 

whole groups at a time, taking proper account of their degrees of freedom2. 

 

Genetic Algorithms (GAs)6,7,8 

Genetic Algorithms (GAs) are an agent-based method presented first in 1961 by Bledsoe9 and 

mathematically formalized by Holland10 in 1975, which takes inspiration from Darwin’s theory 

of the evolution. Each chromosome (model) competes with the others according to the concept 

of the “survival of the fittest”. GAs are based on a bottom-up approach, i.e.  a complex and 

adaptive global behavior of the system emerges from simple interactions of the agents11.  

According to GAs terminology, each gene corresponds to a variable and a sequence of genes, 

i.e. a chromosome, to a model. The population of chromosomes is randomly initialized and the 

presence/absence of each variable is coded by a binary digit. Chromosomes are evaluated for 

their quality, according to a predefined fitness function (such as, for example, Q2 leave-one-

out) and sorted accordingly. Pairs of chromosomes can generate offspring by a crossover 

procedure, the selection of parent chromosomes being both random or biased towards the best 

ones. The gene pool shared by parent chromosomes is retained by the offspring, whereas 

other genes can be changed according to a crossover probability. The second evolution phase, 

by which new chromosomes can be generated, is a mutation procedure, in which each gene 

can be changed according to a mutation probability. Mutation probability is usually set to a low 

value in order to avoid considerable drifts, which may lead far from the optimal region. Every 

time a new chromosome with a better response than already existing ones is generated, it 

enters the population and the worst model is discarded. In this way chromosomes compete 

against each other and only the fittest survive. The evolution phase is iterated until a stop 

criterion is satisfied. Figure 3 provides a scheme for the algorithm of GAs. 
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Figure 3. Scheme for GAs. 

 

Particle Swarm Optimization (PSO)12,7 

Particle Swarm Optimization (PSO) is an agent-based method that was inspired by the 

behavior of flock of birds. Differently from GA, PSO agents do not compete but cooperate in 

order to find the optimal solution. PSO was initially thought as an optimization method and was 

only later modified in order to be specifically applied to variable selection13.  

The number of particles is constant and the population is randomly initialized. PSO particles 

move in a binary search space and each position corresponds to a model. In the modified 

version of PSO, at each iteration a velocity vector is randomly extracted in the range [0,1]. 

The range [0,1] is divided into 3 bins and the new position is calculated depending on the bin 

the velocity falls into, according to the following formulas: 
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where id is the velocity of the i-th particle along the d-th dimension (variable), a is a tunable 

parameter, xid is the position of the i-th particle along the d-th dimension (variable), pid is the 

value of the d-th variable for the i-th particle in its previous best personal position (best model 

found by that particle so far) and pgd is the value of the d-th variable for the g-th particle 

corresponding to the best global model found so far. In such a way, the motion of each particle 

is influenced by its previous personal best position, pid, and by the best global position, pgd. 

The parameter a is named static probability and its initial value is usually set to 0.5. The static 

probability plays the role of balancing exploration and exploitation: the larger the value of the 

parameter a, the greater is the probability to overleap local optima. On the other hand, a small 

value of parameter a is favorable for the particle to follow the two best past global positions 

and for the algorithm to converge more quickly. The modified PSO is intended to possess more 
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exploration ability at the beginning and then an enhanced exploitation ability to search the 

local area around the particle. Accordingly, the parameter is set to decrease along with the 

generations. Therefore, the static probability a usually starts with a value equal to 0.5 and 

decreases to a final value equal to 0.33 at convergence13. 

Figure 4 provides a scheme for the PSO algorithm. 

 

 
Figure 4. Scheme for PSO algorithm. 

 

Ant Colony Optimization (ACO)7,14,15 

Ant Colony Optimization (ACO) is another agent-based method that was inspired by nature, 

the source of inspiration being colonies of ants, who manage to find the shortest path 

connecting their nest and the source of food by pheromone deposition. As ants travel a route 

from a starting point to a food source, they deposit pheromone. Subsequent ants will generally 

choose paths with more pheromone and after many trials they will converge on an optimal 

path. ACO lies somewhere in between GA and PSO in that particles communicate each other 

sharing information, but they are also eliminated at each iteration. 

Ants are randomly generated with a predefined number of variables, then they start building a 

path in the search space according to either a probabilistic or deterministic transition rule. 

Their pheromone deposition will be proportional to the quality of the solution they are able to 

find. 

τi,J (t) is the probability (strength of the pheromone trail) of choosing task J after task i, or the 

probability of choosing a particular value J for a particular parameter i in generation t. Initially 

all probabilities are set to the same small, non-zero value. If a transition between particular 

tasks is used, the pheromone level is increased by an amount proportional to the fitness, f(k), 

according to: 

, ,( ) ( ) ( )i j i jt t f k       
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where β is a constant in the range (0,1]. When all the ants have been evaluated, the 

pheromone level is updated according to: 

 

, , ,( ) (1 ) ( 1) ( )i j i j i jt t t          

where ρ represents the evaporation rate. 

Given J the set of all tasks, the next task is chosen from either of the following expressions: 
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where the probability of choosing a particular task j from the set of available tasks J is given 
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where Ji
k is the set of ant k’s unvisited variables, r is a random number in the range [0,1] and 

r0 is a threshold value. If r is less than or equal to r0, a deterministic selection is made 

(exploitation), while if r is greater than r0 a probabilistic selection is made (exploration). α 

controls how much the pheromone level affects the probability that a particular task is chosen, 

whereas β controls the extent to which the fitness increases the amount of pheromone 

deposited. Another characteristic of the ACO algorithm is the pheromone evaporation rate ρ, a 

process that leads to a decrease in the pheromone trail intensity over time: it helps in avoiding 

rapid convergence of the algorithm towards a sub-optimal region. At each iteration, the 

subsets are evaluated, the pheromone is updated, a new set of ants is created and the 

procedure is reiterated until a stop criterion is met. The criterion for stopping the search can 

be based on a pre-defined evaluation function (e.g. Q2 leave-one-out): usually, whether 

addition/deletion of any feature does not produce a better subset the process is stopped. 

Figure 5 provides a scheme for the ACO algorithm. 

 

 
 

Figure 5. Scheme for ACO algorithm. 
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Least Absolute Shrinkage and Selection Operator (LASSO)2,16 

The LASSO is a regression method proposed by R. Tibshirani in 1996. Similar to Ordinary Least 

Squares (OLS) regression, LASSO minimizes the Residual Sum of Squares (RSS) but poses a 

constraint to the sum of the absolute values of the coefficients being less than a constant. This 

additional constraint is moreover similar to that introduced in Ridge regression, where the 

constraint is to the sum of the squared values of the coefficients. This simple modification 

allows LASSO to perform also variable selection because the shrinkage of the coefficients is 

such that some coefficients can be shrunk exactly to zero.  

The linkage between OLS, LASSO and Ridge is: 
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where n is the number of objects, p the number of variables and  a parameter. 

It can be said that LASSO is an improvement over Ridge, in that LASSO has the beneficial 

aspects of Ridge, i.e. higher bias and lower variance (compared to OLS), but also allows to 

select variables, leading to an enhanced interpretability of the developed models. The λ 

parameter can be tuned in order to set the shrinkage level, the higher the λ is, the more 

coefficients are shrunk to 0. 

 

 
Figure 6. Shrinkage of coefficients by LASSO. When s = 1, LASSO and OLS solutions coincide 

(right side of the graph). When s < 1 regression coefficients are shrunk. The lower the s value 

is, the more the coefficients are shrunk to 0. For example, for s close to 0.4 (dotted red line), 

only 3 variables are selected. 

The shrinkage level can also be set by the shrinkage factor s, defined as: 
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ˆ
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β
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where ˆ LSβ  are the OLS coefficients. When s = 1, the shrinkage level is zero and the LASSO 

solution corresponds to the OLS solution; when s < 1, LASSO shrinks the coefficients (the 

lower the s value, the higher the λ value). For certain values of s, some coefficients are shrunk 

exactly to zero. This path is depicted in Figure 62.  

 

Elastic Net2 

The Elastic Net is a regression method proposed by Zou and Hastie17 in 2005 that combines 

the penalty terms of LASSO and Ridge regression.  
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The Ridge term (βj
2
) allows to shrink the coefficients, whereas the LASSO term is able to shrink 

some coefficients to 0, thus performing variable selection. The two terms can be properly 

tuned by the parameter α, depending on the problem under analysis. The Elastic Net method 

seems to be particularly useful when dealing with highly correlated variables. In such a 

situation the Ridge term shrinks coefficients of correlated variables toward each other, whereas 

the LASSO term picks one among the correlated variables and puts all weight on it. 

Figure 72 shows a comparison of the effects of the shrinkage between LASSO and Elastic Net. 

It is clear how the Elastic Net results in more non-zero coefficients, but with smaller 

magnitude. 

 
Figure 7. Comparison of shrinkage between LASSO and Elastic Net. 
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Variables Importance on PLS projections (VIP)18,19 

The Variables Importance on Partial Least Squares (PLS) projections (VIP) is a variable 

selection method based on the Canonical Powered PLS (CPPLS)20 regression. The CPPLS 

algorithm assumes that the column space of X has a subspace of dimension M containing all 

information relevant for predicting y (known as the relevant subspace). The different strategies 

for PLS-based variable selection are usually based on a rotation of the standard solution by a 

manipulation of the PLS weight vector (w) or the regression coefficient vector, b. 

The VIP method selects variables by calculating the VIP score for each variable and excluding 

all the variables with VIP score below a predefined threshold u (usually u = 1). All the 

parameters that provide an increase in the predictive ability of the model are retained20. 

The VIP score for the variable j is defined as: 
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where p is the number of variables, M the number of retained latent variables, wmj the PLS 

weight of the j-th variable for the m-th latent variable and   (     ) is the percentage of y 

explained by the m-th latent variable. 

The VIP value is namely a weighted sum of squares of the PLS weights (w), which takes into 

account the explained variance of each PLS dimension. 

The “greater than one” rule is generally used as a criterion for variable selection because the 

average of squared VIP scores is equal to 1. 
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